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STEADILY MOVING SOURCES ON THE INTERFACE BETWEEN TWO MEDIA

Michael Papadopoulos

Introduction

We shall consider the propagation of acoustic disturbances generated

be a moving point source, in the presence of a plane refracting surface. We

specify that the source moves, with a constant velocity V, parallel to a

plane surface separating two media of different densities and sound velocities.

In a previous paper, the author (1960) gave a solution which was valid when

the velocity V is greater than the sound velocity in both media, for the

source moving along the interface; this solution was found by assuming

conical motion and then specifying the nature of the source. The method

is suitable neither in the case when the source is off the interface, nor

when its velocity is subsonic with respect to one of the media.

In the half-space y > 0 we find a medium I of density p1 and of

sound velocity c I; in y< 0 we have a medium 2 with density (p 2 =K p1 )

Sponsored by the University of Melbourne, Melbourne, Australia and the
Mathematics Research Center, U. S. Army, Madison, Wisconsin, under
Contract No. DA-11-022-ORD-2059.
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and sound velocity c2  (We take c 2 < CI without losing generality.)

With i = 1 or 2 we may define velocity potentials € for the appropriate

medium, such that the velocity vector q and the pressure change P are

given by the equations

q= V , P pi8. 1 /at

while the * satisfy the wave equations

2 1Va i =(I)

C, at
1

The mathematical problem is to find the potentials i which while satisfying

the appropriate wave equation also represent disturbances set up by a steadily

moving source, and which on the interface satisfy the conditions that the

pressure and normal velocity be continuous. These conditions are that when

y =0

anday y at at

Imagine the point source to have a constant velocity V in the

z-direction. This steady motion implies that the variables t and z are

not independent, but must be related by a relation

T =t-zV

then the potentials must satisfy a reduced wave equation
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Sz'1i i• 1 1i
2 + =2 2 

(2)ax2 ay 2 i8,

where

yi c= V(V2  c)-2

while the continuity conditions for y = 0 become

8ý a€2 aý a€2

__ TTY = K -T (3)

It is clear that in the limiting case V = oo , the moving point source

is equivalent to an infinite transient line source. It is also clear that although

Srepresents a real transverse velocity when V > c. , it is im aginary when

V < c ; the nature of the reduced wave equation 2 changes from hyperbolic1

to elliptic and the form of the acoustic disturbance will also change from one

which permits discontinuities across characteristic surfaces to one which is

continuous everywhere. When only one medium is present, the change in the

nature of the acoustic disturbance as the source velocity changes from super-

sonic to subsonic is well known (See e. g., Ward 1955). For the two-medium

problem previous work has been restricted to the examination of fixed point-

or line- sources of a given time dependence. As well as mentioning the

classical work of Sommerfeld (e. g. 1949) we may cite the work of Cagniard
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(1939) and Pekeris (1956) for accounts of the way in whcih integral transforms

may be used. For the fixed point source of arbitrary time dependence there is

an axis of symmetry, for the uniform infinite line source of arbitrary time

dependence there is a plane of symmetry, but when the point source is moving

with a finite velocity, there is no such property, and the calculations in the

two-medium problem using integral transforms are not easy. The method

described below is suggested as a useful alternative.

I

S .. . . . . . . . . . . . . ... . . .. . . .. . . ... .
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Section 2: The point source moving in a single uniform medium

The concept of a point source of unit strength moving in a single

medium is a well established one (See e.g. Ward 1955). When such a

source moves at a steady supersonic velocity V, the associated velocity

potential, which satisfies the three-dimensional wave equation with sound

velocity c , is

-y 2) (4)2=( 2 - 2

2 2within the conical region yT > (X + y r > 0,

where

2
y= cV(V2 _c)

and
-l

T t-ZV

When the source moves at a steady subsonic velocity V the potential is

2 2 2 (5)
4Tr(I L T + r

k where
p.=cVlc 2  V2),L = c ( - " -

An alternative form which combines both these results, is that for

I any fixed value V, the point source of unit strength has a velocity potential

I
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given in the region x> 0, y> 0 by the formula

2(R f (6)4 .oo (l-p2)" [ Y T- px- y(l-ZZ P

When V < c we have a convention that y < iL. We also take the integration

path along the real axis of the complex p-plane to pass above the branch point

at p = 1 and below that at p = -1 . For points in other quadrants of the

transverse (x, y) plane the signs in the factor

Y[T * px y(O- p)2]

are chosen and used in the integral so as to make the limiting two-dimensional

solution with V = •o, y = c and T = t represent a disturbance which travels

outwards from the z-axis.

The integral 6 which is a superposition of parametric plane solutions

of the reduced wave equation

(9x2 a2 Y2 8T28x Oy y 8T

obviously represents a disturbance which travels in the z-direction with a

velocity V. To show its equivalence to the known potentials 4 and 5,

we consider separately the cases V > c and V < c

We change to polar coordinates in the transverse plan.;, so that we

must consider the integral
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4T .o0 (l-p2)0{yT-r[p COS 8 + sin e(1-p )2]}

in the range 0 < e < T/ .

Apart from the branch points at p = *1 , the only singularities of this integrand

are simple poles at the points where the function

2
{Yr--r[pcos G+ sin O[l-p]] }

vanishes. When, for V > c, y is a real velocity, this function vanishes

only when T > 0, and then at the points

2 2 2 -r
p=[ycos 0 i sin0(y T -r ]/r for yT>r>0

and

2 22½
p=[yTcOSO sinO(r -yT) ]/r for r>yT>0

For a fixed value of 0 the locus of the complex poles for all positive values

of the ratio r/T is the branch of a hyperbola given in the right-hand half p-plane

by the equation p = cosh(v + iO) for real values of v. When r / 0, the

integrand is 0(p- 2) as I pI -•oo ; the integration path can therefore be

shifted by a rotation in the positive sense into the hyperbolic path mentioned

above and shown in Figure 1 without change of value. Small deformations must
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be made in this path to avoid the two conjugate poles in the sense shown

(for a given pair of values r and T ), and the single real pole to the

left of the hyperbola must also be noted. Only the residues at the two

poles on the hyperbola contribute to the integral 7 , and the formula 4

is easily recovered. The residue at the pole on the real axis is real and

makes no contribution to the integral, while the principal value of the

integral along the hyperbola is easily seen to be imaginary and hence of

no account. (By considering separately the two halves of the hyperbolic

path we arrive at an integral which is the difference of complex conjugates.)

In the absence of poles when T < 0, the integration path is shifted into a

horizontal loop between the points p = 1 and p = oo ; there is no contribution

to c in this case.

When - (= ip.) is imaginary the simple poles of the integrand are

for a given E at the points

2 22]
p =[1i4TCOS 0 *sin 0(r +p1 T /r

these points being either in the upper half p-plane when T > 0 or in the lower

half p-plane when T < 0. The pole in the right-hand half plane lies on the

hyperbola p = i sinh(v - ie) for real values of v, and it is to this hyperbola

that we shift the integration path. Two distinct situations arise. When T > 0

only the pole in the first quadrant need be considered in the integration. When

T < 0, both the pole in the third quadrant and that in the fourth quadrant make a

contribution. These points and the sense in which the poles are encircled are
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shown in Figures 2a and 2b. Again the principal value of the integral along

the hyperbola is imaginary leaving only the residues at the poles to fix the

potential, and, regardless of the sign of T the result is given by equation (5).

To calculate the strength of the point source from the potential 7 we

shall use an indirect method. A direct method involves the calculation of

volume flux across a closed surface which contains the source. With the

usual aim of reducing the subsequent integration to one over the range of

a single variable this surface is chosen differently according to the specific

value of V. When V < c an ellipsoid is taken, and when V > c , a

hyperboloid. The indirect approach avoids the need for individual treatment.

Starting from the definition 7 for * in the region r > 0, 0 < G <w/Z

we make several statements. These are

1) The quantity Tý is a function only of the variables s (= r/T)

and 06.

2) The quantity Q which satisfies the same transverse wave

equation as 40 and also the relation (0 = 8Q/8T is given by the equation

Q R1 f[ In{yT - r(p cos 0 + sin 0(l-p 2 ) dp2 1
47r -0 (0 p2 )

It follows that

7T4 = T8Q/8- = - saQ/Bs = -rQ/ar.

I

I

__ _
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3) Q is an integral superposition of logarithmic wave potentials,

and is therefore the velocity potential for some distribution of point-sources

along the z-axis.

4) The strength when T / 0 of such a line distribution is found

by calculating the volume flux per unit length S across a cylindrical
Q

surface which contains the z-axis. Thus

Irr/2

SQ = 4 f lim (r8Q/8r) dO = -4 f lim (T¢) dO (8)
0 r-*0 0 r-'0

5) Because of the relation between 0 and Q the quantity

= aSQ/OT is the volume flux per unit length created by the source

whose potential is . The total volume flux created by this point

source, found by integrating S with respect to T must be equal to

the discontinuity SQ(T = 0+) - SQ(T = 0)

6) It is simple to find the quantity liM (TO) from the equations
r--0

(4) and (5) . From (4) and (8) it follows that S =U(T) when
Q

V>c [U(-r) =1 when T>O, U(T) =0 when "<0], whilefrom (5)

and (8) SQ = sgn(")/2 [sgn(T) = 1 if T > 0, sgn(T) =-1 if T<0 ]

when V < c . Thus for all values of V the potential 7 is associated with

a source of unit strength. The distinction between the subsonic and super-

sonic interpretations of the potential Q is rather curious. When V > c,

Q is the potential of a semi-infinite line source moving lengthways with

velocity V. When V < c, Q is the potential of an infinite line singularity
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moving lengthways with velocity V, the singularity behind the point z = Vt

being a uniform line source, and that ahead of this point being a uniform line

sink.

The potential of a lengthways moving uniform line source of finite

length may easily be found by simple superposition. Even though the

fundamental line potentials Q have different interpretations according

to the value of V, there is no such difference in the case of finite length.

Thus, for a length L of a line source, the strength is defined either by the

-1 1difference U(T) - U(T +LV ) or the difference I sgn (r) - sgn(r +LV

regardless of the value of V the potential Q must be given by the equation
L

Q Rl f(- n YT - r[ pcos 0 + sn d(-p1
Lc 21-

QL="-' 1 f(-Z-l dp

41T -00 Y(T + LV) -r[p cos 0 + sin 0(l-pZ)

(9)

I
I
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Section 3: A point source moving parallel to a plane interface

In this section we return to the discussion of the two-medium problem.
TI

We take a point source of unit strength moving in medium 2 with steady velocity

V at a constant distance y2 from the interface. We have expressed the

potential of this source as a superposition of parametric plane waves and

we are able to find the complete potential by considering the reflection and

refraction of these plane waves and then writing down the integral superposition

to give the total field.

We restrict attention to the region x > 0 . We have three distinct

regions of interest in this half of the transverse plane. For 0 > y > -y?

the source field travels in the positive y-direction and is reflected in the

plane y = 0; this reflected field will apparently be produced at an image

source at the point x = 0, y = "y2 and will travel in the negative y-direction.

Thus we may write
(10)

I1G Yc ' 2dp 1 R(p)*z -2- m f - - 2-+ 21
41T -2o(l-p ) y 2 Trpx_(y+y)(l-p)2 y 2TPX+(y-y 2 )(lp2

when x>0, 0>y>-Y2

R(p) being the reflection coefficient of the plane wave characterized by the

parameter p. On the surface y = 0 both the primary and image fields are
-1

superpositions of plane waves moving along the interface with velocity Y2 p

and in which the variables x and T appear in the function [T 27-px-y 2 (1-p 2) ]1
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The parametric plane wave solution of the reduced wave equation

2 ý l + C)2 1 1 2
-=

2 ay2 2 2axY aT

in medium I which has the same form and velocity at the interface and which

travels in the positive y-direction must have the form

r 2 2½ -1

[Y 2 T - px - y 2 (l-p ) - y(m - p

where m = y2/Y. Hence the potential in medium 1 is given by

00 YZ T(p) dp

0I 2--I-p RI f (11)1 4•2 -c0 (1_pZ) {y T-px-y (1-p y -

when x > 0, y > 0, and where T(p) is the transmission coefficient for the

parametric plane wave.

For the potentials 10 and 11 to satisfy the continuity conditions 3

at the interface, the elementary plane waves must also do so. Hence we

derive the conditions

K[I+ R(p)] :T(p)

and
2 2 : 2

(1 - p) [l-R(p)] (m _p2 T(p)

whence

-P) -K(m p
2 2 2)

(I-p )+K(m -p

t



-14- #274

and

T(p) (12)

(1-p )½+K(m -p2)

With these results only the field in the region x > 0, -y2 > y

remains to be given. This is naturally written down as the sum of the primary

source field and of the image field, each being a superposition of plane waves

which travel in the negative y-direction.

Thus for x> 0, y> 0,
K00 Y2 dp (13)

SK a 0 p ? --

+K 2 Y2 2 T-P- 2 ' 22 P
€1 2w2  _-o [(1-p ) +K(m -p ) ][y 2 T-pX-y 2 (llp ). 2 _y(m -p2)½]

for x>0, 0>y>-y 2
(14)

0z 2 (l-p) 2 dp (1-p2 ) + K(m - p2 ) (l-p)2 _ K(m.p

ci)2 ? -1 -, 2.21 ~24wr - 00 [(-p ) 2+K(m -p a)],y .px.(y+y )(l-pZ)2 Y2 T-pX +(y-yz)(l-p )?

and for x > 0, y < -Y2 (15)

1 P~~~~f ~) 2 d _______ Km-
2 2 2 2

4T2 .0 0 [(lp )+ +K(m -2p ] )1 2 T-px+(y+y 2 )(l-p2) Y2T-px+(y-y 2 )(l-p

The imputation of a direction of motion for the elementary waves is strictly

true only when the quantities y and m are real. The method of this paper

rests, however, on the basis that a solution which is correct for one range of

values of V is also correct for other ranges, since neither the three dimensional

wave equation nor the continuity conditions at the interface depend on the value
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of V. The solutions to be displayed in later sections of this paper may all,

moreover, be verified a posteriori

When the source is taken in medium 1 to move at a constant height

Yl above the interface, we find in a similar manner the potentials

- RI f dp
2 - [(l-p 2 ) +K(m 2 p)½I p.(m2p)½ (1 2)½] (16)

for x>O, y<O,

(17)
•b ! R1f 2 (m2-p 2)-p +~-)(-) Kmp 2 (-)012 2 2* 2 2 2

4w"2 -00 [(l-p 2 )2+K(m p 2 I L 2 TPX+YYlXM _-p )2 Y2 T-pX-(y+ylxm2-p

for x>O, O<y<yl, and

(18)

00 2_ 2 22) 2 1 22 2oo2 (m-p)- 2 dp Km-)+(p) (fp) (p)
_ • .• 2-p ) +(l~p ):_ 2 RIf 2e-q _ 2 P- ) 2 - (m 2 p ) (l p

4w -. [(1-p ) +K(m -p )2] TPX_(Yyy)mZ -'p2) Y2T-px-(Y+yl)(m -p2)

for x>o0, Y>y"

The six formulae from equation (13) to (18) are taken to define the

potential field for any fixed (real) value of V. We shall take these results

no further in this paper; special attention will, however, be given to the

limiting case with the point source moving on the interface. To do this we

can allow the distances yl or y2 to approach zero. However we carry out

this process, we have the expressions
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R o 0 Y2 dp
= • 100 2 yp (19)

2 2T - [lp2 2 2 1 ~ p p
2 0 [(+-p +(m -p} ) 2T-pX+y(1-p )]

for x> 0, y< O, and

K 0 Y2 dp (0
2 Rl f y 1dp2r -V [(1-p2 )+K(m-p )2][Y2 -px-y(M -p )(]

for x>0, y>O.

At this point it is worth our while to consider the result of letting two

sources of different strengths, one in each medium, coalesce into a single

source moving on the interface. If the sum of the individual strengths is a

constant T, then the potentials for the limiting point source are easily

shown to be multiples of the potentials 19 and 20 by the factor T. The

implication is that the form of the point source potential is as unique on the

interface as it is in the interior of a uniform medium.

We may add here the statement that with i = I or 2 the quantity

lim [( 1/V] satisfies Laplace's equation, so that we can pick out from the
v--0

above equation not only potentials associated with the moving point source,

but also the steady potentials associated with the fixed point source as well.

The problem of the fixed transient point source will be solved elsewhere.

In the remainder of this paper we shall examine the formulae (19) and

(20) in greater detail.
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Section 4: The evaluation of velocity potential in the medium with smaller

sound velocity

The general formula, given in terms of polar coordinates r and 0,

1 o y 2 dp
22* 2 Z* 2 21

Zir -00 [(l-p)+K ( m -p) {½Y2T-r[p COS e - (1-p ) sin 0] }

represents the velocity potential in medium 2 when 0 > 0 > ir/2, but the process

of simplifying this integral depends on which of three possible ranges of value

the longitudinal velocity has, since this is bound to affect the position of the

singularities of the integrand.

When V> cI> c 2 , the transverse velocities y2 and y are real with

m(= y 2/y 1 ) <1. The integrand of (21) has branch points at p = *1,

p = *m on the real axis, and when T < 0 no other singularities. When

T > 0 it has simple poles at the points

2 -2 2 Ap=y 2co8*si0( 2 T-r) ]/r when y 2 Tr>p = [Y2 TcOs {) Li sin e(y 2T r-hn > r > 0

or

2_ 2 ?p = [y2Tcos 0 *sin0(r -Y2T )']/r when r> y 2 T> 0

For a given value of 0 the locus of all the possible complex poles is the

hyperbola p = cosh (v - iO) where v is real. With the formal horizontal

integration path taken to pass below the branch points p = -1 and p = -m
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and above the points p = +I and p = +m , we take a new integration path

along the hyperbola, apart from deformations to avoid the two simple conjugate

poles which correspond to particular values of r, T and e . Then if we also

include the (single) simple pole on the left of the hyperbola in the calculation,

there will be no change in the value of the integral when r ,. 0 since the

-2
integrand is 0(p ) as Ip -*oo . A distinction is necessary, resulting in

two different integration paths as shown in Figures 3a and 3b. The hyperbola

in each case crosses the real p-axis at the point p = cos e . When cos E) > m

the hyperbola passes to the right of the branch point p = + in, so that as shown

in Figure 3b a horizontal loop integral between the points p = in and p = cos e

must be included in the new integration path. When, as in Figure 3a, cos e < i,

no such loop is needed.

The pole at the real point p =[y 2 T cos 0 + sin 0(r -y2T )2]/r = cos a

say, is present in both these cases, but when the residue at this point is real

there is no contribution to the potential. Thus only in the case cos 0 > m and

then when cos a > m can there be a contribution to the potential, because the

residue now has an imaginary part.

When y 2 T > r > 0 the contribution from the two poles on the hyperbola

is

0 =_Y 2 _R_ 
s i n h ( v - i G ) 

2 ( 2 2 )
2 2 2 R1 2 s

IT(Y 2 T -'r ) Lsinh -O)+Kcosh (V-is)-m v = arc cosh yZT/r

for the full range 0 > 0 > -Tr/2 , that is for both Figure 3a and 3b. When

the residue at the real pole also is included we have the further contribution



#274 -19-

K___ _2 sin .cos-
cz = + .m)+ 2 sina[C + a (COS 2 (23)

2 (2 2 2 2 2 2 2 (3
rsin a-+K (COS a-r

in a region for r > y2T > 0 restricted to values of ac -8+ arc COS y2 T/r

which lie in the range 1 > cos a > m . Equation (22) defines the potential

in a sector 0 > e > - T/2 of the interior of a cone r = y 2 T . Equation (23)

defines the potential in a thead-wavel region contained between the cone

r = y2 T , the tangent plane which meets the interface 8 = 0 at the line

x = yIT for T>0, andtheplane y=0.

When for negative values of T there are no poles of the integrand,

the horizontal integration path can be replaced by a loop integral round the

branch points p = 1 and p = m ; this integral is imaginary and makes no

contribution.

When V < c2 <c 1 , the transverse velocities y? and y are

positive imaginary,leaving the ratio m real in the range m > 1 In this

fully subsonic case the explicit form of 21 to be evaluated is

S2 2 2 i 2 dp2--- R23 IIZTrpcse -p2si (24)
2ir -00 [(1-p ) +K(m -p )2](il T-r[pcosO_(l-p )2sine]}

with the formal integration path along the real axis indented so as to pass

above the points p = 1, p = m and below the points p = -1 and p = -m

The integrand 24 has simple poles at the points
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2 ?2Z12
p =[i 2 T COS sin 0(r +ýL2 T ) ]/r

for a given 0 the locus of poles in the right-hand half-plane is the hyperbola

p = i sinh(v + i1) for real values of v. When T > 0 for specified r and 0

we may shift the integration path into this hyperbola without change of value,

with only a pole in the first quadrant to be taken into account (See Figure 4a).

When T < 0 the same shift of path is possible, but now poles both in the

third and the fourth quadrants must, be considered (See Figure 4b). The formula

for the potential turns out to be independent of the sign of T . We have the

result that

2 R[ cosh(v+ i1)

- 2 2 2 _•2 2
2Tr[r + ý2 T ] sh(v+ie)+K[m +sinh (v+ie)] v arc sinh 4 T/r•2r

mr sinh v cosh(v+ i0) dV
2 2 2 22 2

0 (IJ 2T -r sinh v) [cosh(v+iO)+K(m +sinh (v+io))]

(25)

the first term comes from the residue terms, and the second is the principal

value of the integral along the hyperbola. Both terms are present without

restriction, in the whole of the quarter-space r > 0, 0 > e > -n/2

In the intermediate case with c > V> c 2 ' Y2 is real, y 1 ( =i4l)

is imaginary and the ratio m (= -in) is also imaginary. The branch point
I
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at p = m thus migrates with change of V to the negative part of the imaginary

axis, and the possible integration contour is also changed. We are now

examining the integral

I Rl 0 Y2 dp

2r .R0f [(lp )2-i K(p +n )2] {y Tr[pcos e-(l-p 2 )asin e] } (26)

2w -2

The position of the poles is exactly as in the fully supersonic case, but in

shifting the integration path to the hyperbola p = cosh (v - ie) we must, in

addition to considering the poles, also include a loop between the points

p = -in and p = -ioo in order to preserve the value of the potential. The

full integration path when T > 0 is shown in Figure 5a while the corresponding

integration path when T < 0 when there are no poles is shown in Figure 5b.

When r > 0 there are three distinct contributions. From the complex

poles we have the residue term

{2 hI)sinh(v- iG) ( 2 7 a)

2 r[¥2 T 2_ r2 sinh(v-1A) + K[cosh (v-i) + n v

this being the exact continuation of equation (22) within the cone ¥jr > r > 0

The principal part of the integral reduces to an imaginary quantity, so that we

have next the residue at p = cos a , this being the head wave contribution

KY 2 sin a [Cosa + n (27b)

222 rYT [sinC +K (COS a.-m

12
1TryT 2
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with - -e + arccO•Y T/r inthe range 0 < a < rr/2, r> y 2r < 0 . This head

wave disturbance occupies the whole region T > 0 outside the cone r = y2 r/.

The contribution from the vertical loop is present for all positive and

negative values of w and has the form

K ry 2 cos ______________________
K r2 dq(q2- n) 2(27c)

2- f2 2 2 2 2 2(+Z.~ 2 2 2I n [l+q 2K (n -q)] {( y 2T +rsin +r q cos2e }

The horizontal loop 0oritribution which must be considered when T < 0 in

addition that given b yequation (27c) has the form

KY rsinO 00 2 )
pp-i (pZ+n )Z dp 27d)

2 1 [K 2(p P•+l -p][Y2 T-rpcos0) 2+ (p 2_1) r 2sin 2l

The general expression for ý, has now been simplified in three distinct

ranges of V. A featrure which is held in common for all three ranges is that

only the explicit resLdue term is present on the axis r = 0 away from the

source; the remainirng integral terms are all seen to vanish on this axis

away from the source-.
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Section 5: The evaluation of velocity potential in the medium with the

larger sound velocity

The formula to be simplified for various ranges of ýhe longitudinal

velocity V is, for 0 < 0 < 7r/2

0 Y2 dp

P•' -• Rf 2 d 2! (28)
2T• -00 [(I-p )?+K(m -p ) ]{Y2 T-r[pcos + (m -p )sin0]}

When V> c 1> c the parameters in the integrand are real; the poles
1 2

of the integrand at the points

[ r= -COS isin0LY2T2 m 2r221/r, for yiT>r>O,

lie in the right-hand half of the p-plane on the hyperbola p = m cosh(v +iO)

and for real values of v. This hyperbola crosses the real axis at the point

p = m cos 0 which is always to the left of the point p = m < 1 . We shift

the integration path to this hyperbola with indentations at the poles as shown

in Figure 6. We note the presence of a pole on the left of the hyperbola at

the point
22 2 2,

p = [TCOSe 0 sin0(m r V ) ]/r

for r> ylT> 0
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The residue here is real and there is no contribution to the potential. The

principal part of the integral along the hyperbola makes no contribution

either, since the integral in the first quadrant combines with that in the

fourth quadrant to give an imaginary quantity. The residue at the conjugate

poles gives the result that

KY2  R Km sn i n-h sinh v+nv m (29)

2 2 2 A -2 ]½Tr[1 T -r ] cosh (v+ A) 2+ MK sinhr(v+) v _-arc cosh yiT/r

for yIT > r > 0 only.

For T < 0 , in the absence of poles of the integrand, the integration

path may be shifted into a loop about the branch points p = 1 and p = m

this integral may be seen to be imaginary, thus making no contribution to the

potential.

We note here that the equations (22), (23) and (29) determine in

full the potentials for a supersonic point source moving along the interface;

they are equal to these previously obtained by another method (Papadopoulos

1960).

In the fully subsonic case with V < c < c 1 , and m >1
2~~ 1A

we have the inteqral

00 i [ido
1 K. R _ f_ _ 2 _ _____ (30)

21T -0o [(l-pZ )+K(m -p )k]{iLz T-r[pcos e + sin 6(m Zp )2 (3

Here the poles of the integrand, at the points
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O~2 2 2 •27 p = [i. 2 TCOSO E sin 0(r 2+ 'f2ZT ) J/r

m

lie on the hyperbola p = im sinh(v - iO) for real values of v, when

they are in the right-hand half p-plane. As before there is a distinction

between the number of poles to be taken into consideration in the cases

T > 0 and T < 0 ; a further distinction arises because when m sin 0 > 1

the hyperbola p = im sinh (v - iO) passes to the right of the branch point

p = 1. Thus when m sin 0 < 1, we shift the integration path to the hyperbola,

but when m sin 0 > I, the same shift involves the addition of a horizontal

loop integral between the points p = 1 and p = m sin 0. The four cases are

indicated in Figure 7.

It is found, however, that the sign of T has no effect on the formula

for the potential. Thus, regardless of this sign and of the value of 0 in the

range 0 < e < rr/2 , we have the potential

K4 2  F cosh(v- iG) 1 (31a)

1Rl 2-22 I Tm K cosh(v-iO)+[m sinh(v-iO)+l]. v =arcsinh iT/r

TK + r ] 00+l2-- sni 1 /

K+ 22 r 0 sinh v cosh(v- iO)
+----- m 222 2,2d2

IT 0 [T -r sinh v] {mKcosh(v-iO)+[m sinh (v-i0)+l]-}

with the first term coming from the residue at the poles, and the second term

the principal part of the integral along the hyperbola. In addition, when

m sin 0 > 1, we have the contribution from the horizontal loop integral,
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which reduces to the term
ýL2Kr m sin- e+ 2

2 -r msine (2l) [pcos +sine(m - p2)] dp
" 7 I [pZ1+Klmp 2 )] {2T2+r2[pcos e+(rn-p2)½ sin6]}(3b

[T 1IK( P T+ [p so(m )1{D (31b)

The function of this term is to remove a discontinuity in the quantity

aoi/88 which appears on the plane T = 0 in the first term of 31a

for values of 0 which make 1> sin 0> I/in

Finally in the intermediate case c 1 > V > C2 we examine the

formula

00 Y dp

1-K-- Rlf 0 212 2 2
Zir .oc [(l-p -z0 ) 2 2n )]{Y2T-r[pcosO -isin0(p +n)]} (32)

This case differs from the earlier ones in that the poles of the integrand

lie at points

22 221
p={y2 T COS8 0isinG[r n +y 2 T ] }/r

for a given 0 and real values of v the hyperbola p = n sinh(v - iA) is

the locus of these points, in the lower half p-plane. The deformed integration

path which includes this hyperbola is shown in Figure 8. Whatever the sign

of T there is only one pole which makes a contribution to the potential.

There are two other terms present, the principal part of the integral along

the hyperbola, and the horizontal loop integral. Thus the potential i is
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given in full by the expression

<'2 R - cosh v - O- 1
1 22 2~ 2 2 J.

2rr[ •21Tr] fL [1-n sinh2 (v- iO)1 2 - iKn coshv-i0 v-- arcsinhFiT/r

+ 2 Im sinh v cosh(v- iO) dV
2 f 2 2 2. 2 ' 2 2

Tr 0 (1i T- r sinh v) [(1-n sinh (v- iO)] 2-iKncosh(v- iO)]11

(33)

KY2rsinO 00 dp(pl)½ (p2 + n2
+ 2 f 222 2222 2

Tr 1 [K (p2+n )+l-p ]{(y T-rpcos 0,)+r (p2+n )sin 0}
2

It will again be noted that only the explicit residue terms are present on the

z-axis away from the point source, all the integral terms vanish when r = 0,

except at the source itself. This point is relevant when we consider the

strength of the source in this two-medium problem.

a•S
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Section 6: The flux associated with a point source moving on a plane

interface

We return to the indirect method for calculating the source strength

outlined in Section 2. Given the potential •i in the range 0 < e < ir/2 we

define the quantity

ITV 2

SQ -zf lim[m 1]de
1 0 r-O (34)

which represents the flux per unit length produced in medium 1 by a moving

line singularity whose potential Q1 is given by the equation

oo f n{y 2T-r[pcosO+sinO(m p 2 ]}QI= 2-• Rl f 2-
2 _r (1-p ) + K(m2_p2)z

No matter what the value of V, we may easily calculate the value of S

as a function of T from the equations (29), (31), (33), and (34)

remembering that only the explicit residue terms make a contribution

in the limit r-0. In each case there is the same discontinuity in the

value of S across the origin T = 0, so that the total volume flux from

the point source into medium 1 is K/(1+K).

Similarly we have the quantity

0
SQ =-2f lim [TO•2 ]d (35)

Q2 -r/2 r-O
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which represents the flux per unit length produced in medium 2 by the line

source of potential Q given by

2

Q R1oo An{y 2 T-r[pcos G- sinu(l-p )2] dp

22 22 z 22W -0 (l-p)! +i(m2p)

We find from the expressions (22), (25), (27) and (35) that the volume

flux created in medium 2 by the moving point source is l/(1 + k).

The total volume flux produced by the point source is unity, it is

apportioned in a definite ratio between the two media such that the rate at

which mass is created by the source is the same for each medium regardless

of the (constant) velocity of the source.

.U:
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p =Cos 9

p,= -I +

Figure 1

The original and subsequent integration paths for
equation (7) in the supersonic case (T > 0).

p= sin0 p =sin 0

p -- p -+ i p -+

Figure 2a Figure 2b

The original and subsequent integration The original and subsequent integration
paths for equation (7) in the subsonic paths for equation (7) in the subsonic
case (T> 0) . case (T<0) .
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p pp =cos e p =cos E

p=-I p=-m P=M plk

mp=-m

Figure 3a Figure 3b

The original and subsequent integration The subsequent integration path for
paths for equation (21) in the fully equation (21) in the fully supersonic
supersonic case (T > 0, COS 0< m) case(T>O, COS 0>m)

sp Osin e

p=-m p=- p=-m p=-l p=l P=M

Figure 4a Figure 4b

The original and subsequent integration The original and subsequent integration
paths for equation (24) in the fully paths for equation (24) in the fully
subsonic case (T > 0) subsonic case (T < 0)
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P =Cose

p-l p=l p~l

p:-jn p -in

Figure 5a Figure 5b

The original and subsequent integration The subsequent integration path for
paths for equation (26) in the case of equation (26) in the case of inter-
intermediate velocity (T > 0) mediate velocity (T < 0)

p =m cos e

Figure 6

The initial and subsequent integration paths for
equation (28) in the fully supersonic case (T > 0)
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p m sin 2  p=msine

p=-m p=-I p=I p=M P =-m p=-i

Figure 7a Figure 7b

The initial and subsequent integration The initial and subsequent integration
paths for equation (30) in the fully paths for equation (30) in the fully
subsonic case (T > 0 m sin e< 1). subsonic case (T < 0, m sin O< 1).

p m sine p m sin 0

p M1

Figure 7c Figure 7d

The subsequent integration path for The subsequent integration path for
equation (30) in the fully subsonic equation (30) in the fully subsonic
case (T > 0, m sine>1). case (T<0, m sin 0>1).
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PI

i p=l

k-- p =- i n sin 0

Figure 8

The subsequent integration path for equation (32)
in the case of intermediate velocity.
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